Abstract

Linear and non-linear stability analysis for characterization of micropolar film flowing down the inner surface of a rotating infinite vertical cylinder is given. A generalized non-linear kinematic model is derived to represent the physical system and is solved by the long wave perturbation method in the following procedure. First, the normal mode method is used to characterize the linear behaviors. Then, an elaborated non-linear film flow model is solved by using the method of multiple scales to characterize flow behaviors at various states of sub-critical stability, sub-critical instability, supercritical stability, and supercritical explosion. The modeling results indicate that by increasing the rotation speed, Ω, and the radius of cylinder, R, the film flow will generally stabilize the flow system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.