Abstract

Spin-orbitronics, which takes advantage of spin-orbit coupling (SOC), has expanded the research objects of spintronics to nonmagnetic materials. Here, we report the emerging nonlinear spintronic phenomena in the inversion-asymmetric nonmagnetic materials with SOC. For instance, the surface state of three-dimensional topological insulator (TI) owns helical spin textures with the spin and momentum perpendicularly locked. We show the observation of a nonlinear magnetoresistance (called bilinear magneto-electric resistance, BMER) and nonlinear Hall effect in a prototypical TI Bi2Se3, which scale linearly with both the applied electric and magnetic fields. We further reveal that these effects are originated from the conversion of a nonlinear spin current to charge current under the application of an external magnetic field. A close link between the BMER and the spin texture was established in TI surface states, which enables a novel transport probe of spin textures. We further extended the observation of BMER effect to the d-orbital two-dimensional electron gas (2DEG) at a SrTiO3 (STO) (111) surface. The BMER probes a three-fold out-of-plane spin texture, in addition to an in-plane one at the STO(111) surface 2DEG. This novel spin texture is in contrast to the conventional one induced by the Rashba effect. By performing tight-binding supercell calculations, we find that this 3D spin texture is fully described by the confinement effects of the STO t2g conduction band in the (111) plane. These findings open a new branch in spintronics, which discusses the nonlinear transport effects in spin-polarized nonmagnetic materials, and is therefore referred to as nonlinear spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call