Abstract
Nonlinear fluid simulation of drift wave turbulence in the presence of symmetry breaking particle source is performed for the cylindrical magnetized plasmas. It is demonstrated that the symmetry breaking of the system directly affects the selection rule of structure formations, the streamers disappear, and the zonal flows are enhanced in the case with the symmetry breaking. The symmetry breaking is introduced in the flux-driven simulation by inducing the particle source whose amplitude depends on the azimuthal angle. The symmetry breaking mode is driven stationarily, and the nonlinear process of the drift waves is significantly modified. By scanning the amplitude of the symmetry breaking source, the structure formation processes are systematically investigated. In addition, the nonlinear forces of the turbulence show the relaxation of the density gradient and the drive of the perpendicular/parallel flows in a two-dimensional manner.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have