Abstract
In this paper, we present the concept of a “shape manifold” designed for reduced order representation of complex “shapes” encountered in mechanical problems, such as design optimization, springback or image correlation. The overall idea is to define the shape space within which evolves the boundary of the structure. The reduced representation is obtained by means of determining the intrinsic dimensionality of the problem, independently of the original design parameters, and by approximating a hyper surface, i.e. a shape manifold, connecting all admissible shapes represented using level set functions. Also, an optimal parameterization may be obtained for arbitrary shapes, where the parameters have to be defined a posteriori. We also developed the predictor-corrector optimization manifold walking algorithms in a reduced shape space that guarantee the admissibility of the solution with no additional constraints. We illustrate the approach on three diverse examples drawn from the field of computational and applied mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.