Abstract
We propose a framework for 2D shape analysis using positive definite kernels defined on Kendall's shape manifold. Different representations of 2D shapes are known to generate different nonlinear spaces. Due to the nonlinearity of these spaces, most existing shape classification algorithms resort to nearest neighbor methods and to learning distances on shape spaces. Here, we propose to map shapes on Kendall's shape manifold to a high dimensional Hilbert space where Euclidean geometry applies. To this end, we introduce a kernel on this manifold that permits such a mapping, and prove its positive definiteness. This kernel lets us extend kernel-based algorithms developed for Euclidean spaces, such as SVM, MKL and kernel PCA, to the shape manifold. We demonstrate the benefits of our approach over the state-of-the-art methods on shape classification, clustering and retrieval.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.