Abstract
SummaryReinforced concrete coupled wall systems that consist of multiple shear walls linked by coupling beams are known to be very effective for resisting lateral loads in high‐rise buildings. As to improving the seismic capacity of coupled wall systems, high‐performance fiber‐reinforced cement composites (HPFRCCs) have been recently considered. These materials are characterized by tension strain‐hardening behavior that can improve the ductility and toughness of structures subjected to reversed cyclic loading. In this study, nonlinear finite element analyses were conducted to investigate the effects of HPFRCCs on the seismic behavior of irregular tall buildings with coupled wall systems. The coupling beams were modeled using moment hinge elements, and the structural walls were modeled using fiber elements. Comparisons between analysis and test results of coupled wall specimens with and without HPFRCCs indicate that the modeling methods used well predict both the overall and local behaviors. The responses of a 56‐story irregular tall building with coupled walls are discussed with focus on the effects of HPFRCCs. It is noted that the use of HPFRCCs in coupling beams and structural walls of one‐fourth height from the base greatly affects the failure mode. For irregular tall buildings, nonlinear response history analysis indicates higher mode effects are critical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Structural Design of Tall and Special Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.