Abstract

We study the saturation near threshold of the axisymmetric magnetorotational instability (MRI) of a viscous, resistive, incompressible fluid in a thin-gap Taylor-Couette configuration. A vertical magnetic field, Keplerian shear, and no-slip conducting radial boundary conditions are adopted. The weakly nonlinear theory leads to a real Ginzburg-Landau equation for the disturbance amplitude, as in our previous idealized analysis. For small magnetic Prandtl number (Pm<<1) , the saturation amplitude scales as Pm2/3 while the magnitude of angular momentum transport scales as Pm4/3. The difference from the previous scalings (proportional to Pm1/2 and Pm respectively) is attributed to the emergence of radial boundary layers. Away from those, steady-state nonlinear saturation is achieved through a modest reduction in the destabilizing shear. These results will be useful in understanding MRI laboratory experiments and associated numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.