Abstract

We show by means of a perturbative weakly nonlinear analysis that the axisymmetric magnetorotational instability (MRI) of a viscous, resistive, incompressible rotating shear flow subject to a background vertical magnetic field in a thin channel gives rise to a Ginzburg-Landau equation for the disturbance amplitude. For small magnetic Prandtl number (P(m)), the saturation amplitude is proportional square root P(m) and the resulting momentum transport scales as R(-1), where R is the hydrodynamic Reynolds number. Simplifying assumptions, such as linear shear base flow, mathematically expedient boundary conditions, and continuous spectrum of the vertical linear modes, are used to facilitate this analysis. The asymptotic results are shown to comply with numerical calculations using a spectral code. They suggest that the transport due to the nonlinearly developed MRI may be very small in experimental setups with P(m)<<1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.