Abstract
To effectively suppress the effects of uncertainties including unmodeled dynamics and external disturbances in the vehicle stabilization system, a nonlinear robust control strategy based on a multilayer neural network is proposed in this paper. First, the mechanical and electrical coupling dynamics model of the vehicle stabilization system, considering model uncertainty and actuator dynamics, is refined. Second, the lumped uncertainty of the vehicle stabilization system is estimated by a multi-layer neural network and compensated by feedforward control. The high robustness of the system is ensured by constructing the sliding mode feedback control law. The proposed control method overcomes the limitations of sliding mode technology and the neural network and is naturally applied to the vehicle stabilization system, avoiding the adverse effects of high-gain feedback. Based on Lyapunov theory, it is demonstrated that the proposed controller is able to achieve the desired stability tracking performance. Finally, the effectiveness of the proposed control strategy is verified by co-simulation and comparative experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.