Abstract

This paper presents a new nonlinear robust attitude control strategy for the tilt trirotor unmanned aerial vehicle (UAV). Fixed-time convergence control of the UAV’s attitude tracking errors under the effects of model uncertainties and unknown external disturbances is achieved by utilizing the proposed control design. Actor–critic (AC) structure based neural networks are trained only with the information of the UAV’s inputs and outputs data, to handle the UAV’s modeling uncertainties with bounded estimation error. Then a sliding-mode based fixed-time controller is designed to compensate the approximation error of the neural networks and the unknown external disturbances. Based on the Lyapunov stability theory, the stability analysis of the closed-loop system is presented. The performance of the presented nonlinear robust control strategy is validated through the real-time flight experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.