Abstract

Based on the Ehrenfest theorem, an equation of motion that takes relaxation into account has been presented in wave-function theory, and the resulting response functions are nondivergent in the off-resonant as well as the resonant regions of optical frequencies. The derivation includes single- and multideterminant reference states. When applied to electric dipole properties, the response functions correspond to the phenomenological sum-over-states expressions of Orr and Ward [Mol. Phys. 20, 513 (1971)] for polarizabilities and hyperpolarizabilities of an isolated system. A universal dispersion formula is derived for the complex second-order response function. Response theory calculations are performed on lithium hydride and para-nitroaniline for off-resonant and resonant frequencies in the electro-optical Kerr effect and second-harmonic generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.