Abstract

Future missions for aircraft will expose structures to severe thermal and acoustic loads. Efficient analysis methods for predicting nonlinear random response and fatigue life are urgently important. This paper presents a finite element model for analyzing nonlinear random dynamic behaviors of Carbon-Carbon composite panels under temperature gradients and Guassian excitations. The temperature distribution over the plate follows double sine curve. A finite element formulation combined with the equivalent linearization approach and normal mode method is established. The global system of equations is reduced to a set of nonlinear, coupled modal equations. Examples are given for an orthotropic C/C composite laminated panel at various combinations of temperatures gradients and sound pressure levels. Numerical results include RMS values of maximum deflection, time histories of deflection response and stress response, power spectrum densities, probability distribution functions and higher statistical moments. Numerical results verified all three types of panel motions for a simply supported orthotropic laminated plate: small-deflection random vibration about the initial equilibrium positions, snap-through motions between the two buckled positions, and nonlinear random response about new equilibrium positions after post-buckling. Numerical results will provide the important reference basis to aero engine structural integrity design and improving the structure dynamic strength and working life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.