Abstract

PurposeThe purpose of this paper is to assess the flow of a nanofluid over a porous moving wedge. The passive control model along with the magnetohydrodynamic (MHD) effects is used to formulate the problem. Furthermore, in energy equation, the non-linear thermal radiation has also been incorporated. The equations governing the flow are transformed into a set of ordinary differential equations by using suitable similarity transforms. The reduced system of equations is then solved numerically using a well-known Runge–Kutta–Fehlberg method coupled with a shooting technique. The influence of parameters involved on velocity, temperature and concentration profiles is highlighted with the help of a graphical aid. Expressions for skin-friction coefficient, local Nusselt number and Sherwood number are obtained and presented graphically.Design/methodology/approachNumerical solution of the problem is obtained using the well-known Runge–Kutta–Fehlberg method.FindingsThe analysis provided gives a clear description that the increase in m and magnetic parameter M results in an increased velocity profile. Both these parameters normalize the velocity field. Radiation parameter, Rd, increases the temperature and concentration of the system so does the temperature ratio θω reduces the heat transfer rate at the wall for both stretching and shrinking wedge.Originality/valueIn the study presented, the flow of nanofluid over a moving permeable wedge is considered. The solution of the equations governing the flow is presented numerically. For the validity of results obtained, a comparison is also presented with already existing results. To the best of the authors’ knowledge, this investigation is the first of its kind on the said topic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call