Abstract

The transient nonlinear oscillations of a spherical gas bubble in an incompressible, viscous liquid subject to the action of a sound field are investigated by means of an asymptotic method. Approximate analytical solutions are presented for the frequency regions of the fundamental resonance, the first and second subharmonic, and the first and second harmonic. Based on the results of this investigation, a new hypothesis to explain the connection between subharmonic signal and cavitation is put forward. It is suggested that bubbles emitting the subharmonic signal act primarily as monitors of cavitation events, and are smaller than resonance size. Finally, the free oscillations of the bubble are briefly considered. Subject Classification: 35.10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.