Abstract

Chelidamic acid, acting as ligands, reacted with metal cation of lead and lanthanum. Both of them were dissolved in water and resulted in novel MOFs complexes by using solvothermal synthesis method. The complexes were characterized by the X-ray diffraction, UV–vis spectrophotometer and Z-scan measurements to investigate their morphology and optical properties. The Z-scan measurements indicated that the obtained lead metal-organic chelidamic acid frameworks showed 6.09 × 10−12 esu of χ(3). The special structure and properties, especially the empty f-electron orbital of the rare earth elements, were used to enhance optical nonlinearity. Using one-step solvothermal synthesis method, we added lanthanum into the lead-chelidamic acid metal organic complexes. By changing the spatial configuration of the ligand in the self-assembly process, novel structural complex metals of the lead-lanthanum metal-organic chelidamic acid frameworks have been successfully synthetized, and the third-order nonlinear susceptibility of χ(3)was enhanced to be 1.13 × 10−11 esu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.