Abstract

The development of optical frequency standards with a relative uncertainty of reproducing the time and frequency units at a level as low as 10−17–10−18 calls for an unprecedented accuracy in estimating the role of higher orders of optical nonlinearity, caused by the influence of the optical lattice on the frequency shift of the ‘clock transition’. This paper presents a systematic calculation of the contributions of multipole nonlinear anharmonic effects to the error of clocks based on optical lattices for alkaline-earth-like Sr, Yb, and Hg atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.