Abstract

The structure of the electronic nonlinear optical conductivity is elucidated in a detailed study of the time-reversal symmetric two-band model. The nonlinear conductivity is decomposed as a sum of contributions related with different regions of the first Brillouin zone, defined by single or multiphoton resonances. All contributions are written in terms of the same integrals, which contain all information specific to the particular model under study. In this way, ready-to-use formulas are provided that reduce the often tedious calculations of the second and third order optical conductivity to the evaluation of a small set of similar integrals. In the scenario where charge carriers are present prior to optical excitation, Fermi surface contributions must also be considered and are shown to have an universal frequency dependence, tunable by doping. General characteristics are made evident in this type of resonance-based analysis: the existence of step functions that determine the chemical potential dependence of electron–hole symmetric insulators; the determination of the imaginary part by Hilbert transforms, simpler than those of the nonlinear Kramers–Krönig relations; the absence of Drude peaks in the diagonal elements of the second order conductivity, among others. As examples, analytical expressions are derived for the nonlinear conductivities of some simple systems: a very basic model of direct gap semiconductors and the Dirac fermions of monolayer graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.