Abstract

We present a new study of nonlinear NMR and Bose-Einstein Condensation (BEC) of nuclear spin waves in antiferromagnetic MnCO3 with coupled electron and nuclear spins. In particular, we show that the observed behaviour of NMR signals strongly contradicts the conventional description of paramagnetic ensembles of noninteracting spins based on the phenomenological Bloch equations. We present a new theoretical description of the coupled electron-nuclear spin precession, which takes into account an indirect relaxation of nuclear spins via the electron subsystem. We show that the magnitude of the nuclear magnetization is conserved for arbitrary large excitation powers, which is drastically different from the conventional heating scenario derived from the Bloch equations. This provides strong evidence that the coherent precession of macroscopic nuclear magnetization observed experimentally can be identified with BEC of nuclear spin waves with k=0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.