Abstract
Respiratory biomechanics constitutes an important topic in clinical practice. Different strategies like mathematical models have been implemented to understand and replicate scenarios allowing deeper analysis. In this paper, a nonlinear N - compartments model is presented, allowing to represent the lung in a heterogeneous way. It considers the resistance of each generation of the airway and each alveolar compartment characterized independently. Includes properties of nonlinear elastance, viscoelasticity, inertia, and surface tension. In this work, to show the functionality of the model, a simulation of four alveolar units coupled to the airway model is presented using pressure as input signal simulating mechanical ventilation. However, the model can be used to simulate any desired number of alveolar units. Values at airway output were compared to the linear model, obtaining a correlation close to 1. Also, was compared to a physical test lung using Hamilton - S1 mechanical ventilator obtaining a positive correlation. The model makes it possible to evaluate the effects of different properties during spontaneous respiration or mechanical ventilation, both at the airway opening and alveolar. These properties include viscoelasticity, surface tension, inertia, among others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.