Abstract

PurposeThe purpose of this paper is a comparable evaluation of the influence of a particular element (Bi and Sb) added to Sn‐Ag‐Cu and Sn‐Zn alloys on their surface and interfacial tensions, as well as the wetting properties on the Cu substrate expressed by the wetting angle.Design/methodology/approachThe authors applied the L8 orthogonal Taguchi array to carry out the experiments and discussed the results using analysis of variance (ANOVA).FindingsIt was expected, on the base of previous studies, the decrease of the surface and interfacial tensions and thus improving wettability after the Bi and Sb addition to Sn‐Ag‐Cu and Sn‐Zn alloys. Unfortunately, the obtained results on the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys and the quaternary Sn‐Zn‐Bi‐Sb alloys do not confirm these trends. The performed analyses suggest that the compositions of the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys, as well as the quaternary Sn‐Zn‐Bi‐Sb alloys, do not have optimal compositions for practical application. The Cu, Bi and Sb elements in the case of the Sn‐Ag‐Cu‐Bi‐Sb alloys and the Zn, Bi and Sb elements in the case of the Sn‐Zn‐Bi‐Sb alloys show mutual interaction and, in consequence, there is no correlation between the tendency of the surface and interfacial tensions changes and the wettings of the Cu substrate.Research limitations/implicationsIt is suggested that further studies are necessary for the purpose of the practical application, but they should be limited mainly to the Sn‐Ag‐Cu‐Bi and the Sn‐Zn‐Bi alloys with the optimal compositions.Practical implicationsThe performed analysis suggests that none of the investigated compositions of the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys, as well as the quaternary Sn‐Zn‐Bi‐Sb alloys, have the optimal compositions for practical application.Originality/valueThe quickest way to determine which element of the alloy composition influences the surface tension and the wetting properties, and how, is to apply orthogonal analysis. After choosing the orthogonal array, the experiments were performed and analysis of variance (ANOVA) was used to perform the quantifiable analysis of the measured and calculated results of surface and interfacial tensions, as well as the wetting properties on the Cu substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.