Abstract

The modeling of steel fiber reinforced concrete (SFRC) is a challenging task in comparison with the conventional reinforced concrete structures. Softening functions used to numerically reproduce SFRC fracture need to describe the effects associated with the post-cracking residual strength induced by the fibers in the concrete matrix. In order to do this, multilinear softening functions can be used to consider these effects. The work presents the results of a study in which the behavior of a SFRC beam tested in four-point bending test is compared with the responses obtained in nonlinear simulations using the finite element method. Multilinear softening functions are obtained through an inverse analysis technique, aiming to reproduce the phenomena of appearance and propagation of cracks. The simulations were performed using ATENA/GiD software. The technique adopted to find the softening function of SFRC allowed to reproduce, with a good agreement, the behavior reported experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call