Abstract

In this work, we use Pennes' nonlinear model to estimate the temperature distribution generated by electromagnetically excited nanoparticles and metabolic processes within a spherical tumour surrounded by a sphere of healthy tissue. We describe an efficient numerical approach to analyse the proposed nonlinear model for the heat transfer. Numerical results for the nonlinear bio-heat transfer model with the temperature dependent blood perfusion are presented, and compared with those of the traditional Pennes linear model with constant perfusion rate. We also investigate the dependence of tissue temperature and nanoparticle heat production on the volume fraction of nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.