Abstract
ObjectiveWe aimed to construct a nonlinear regression model through Extreme Gradient Boost (XGBoost) to predict functional outcome 1 year after surgical decompression for patients with acute spinal cord injury (SCI) and explored the importance of predictors in predicting the functional outcome.MethodsWe prospectively enrolled 249 patients with acute SCI from 5 primary orthopedic centers from June 1, 2016, to June 1, 2020. We identified a total of 6 predictors with three aspects: (1) clinical characteristics, including age, American Spinal Injury Association (ASIA) Impairment Scale (AIS) at admission, level of injury and baseline ASIA motor score (AMS); (2) MR imaging, mainly including Brain and Spinal Injury Center (BASIC) score; (3) surgical timing, specifically comparing whether surgical decompression was received within 24 h or not. We assessed the SCIM score at 1 year after the operation as the functional outcome index. XGBoost was used to build a nonlinear regression prediction model through the method of boosting integrated learning.ResultsWe successfully constructed a nonlinear regression prediction model through XGBoost and verified the credibility. There is no significant difference between actual SCIM and nonlinear prediction model (t = 0.86, P = 0.394; Mean ± SD: 3.31 ± 2.8). The nonlinear model is superior to the traditional linear model (t = 6.57, P < 0.001). AMS and age played the most important roles in constructing predictive models. There is an obvious correlation between AIS, AMS and BASIC score.ConclusionWe verified the feasibility of using XGBoost to construct a nonlinear regression prediction model for the functional outcome of patients with acute SCI, and proved that the predictive performance of the nonlinear model is better than the traditional linear regression prediction model. Age and baseline AMS play the most important role in predicting the functional outcome. We also found a significant correlation between AIS at admission, baseline AMS and BASIC score.Trial registrationClinicalTrials.gov identifier: NCT03103516.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.