Abstract

A model, based on the resistively shunted junction theory, is developed and used to study microwave absorption in weak-link Josephson junctions in high-${T}_{c}$ superconductors. Both linear and nonlinear cases of microwave absorption in Josephson junctions are analyzed. A comparison of the model with microwave absorption loop theory is presented along with a general condition for the applicability of both models. The nonlinear case was solved numerically and the threshold points of sharp microwave absorption are presented. At these points, a $2\ensuremath{\pi}$ phase quantization takes place within each microwave cycle, leading to an onset of a sharp rise of absorption. Existence of the $2\ensuremath{\pi}$ dynamic quantization is the key to the interpretation of nonlinear microwave absorption data. The nonlinear microwave absorption model is extended to the study of nonuniformly coupled junctions, and a general statement for the applicability of such a model is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.