Abstract
The ideal MagnetoHydroDynamic (MHD) equations accurately describe the macroscopic dynamics of a perfectly conducting plasma. Adopting a continuum, single fluid description in terms of the plasma density ρ, velocity v, thermal pressure p and magnetic field B, the ideal MHD system expresses conservation of mass, momentum, energy, and magnetic flux. This nonlinear, conservative system of 8 partial differential equations enriches the Euler equations governing the dynamics of a compressible gas with the dynamical influence - through the Lorentz force - and evolution - through the additional induction equation - of the magnetic field B. In multi-dimensional problems, the topological constraint expressed by the Maxwell equation ∇ B = 0, represents an additional complication for numerical MHD. Basic concepts of shock-capturing high-resolution schemes for computational MHD are presented, with an emphasis on how they cope with the thight physical demands resulting from nonlinearity, compressibility, conservation, and solenoidality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.