Abstract
Characteristic non-linear effects can be observed, when piezoceramics are excited using weak electric fields. In experiments with longitudinal vibrations of piezoceramic rods, the behavior of a softening Duffing-oscillator including jump phenomena and multiple stable amplitude responses at the same excitation frequency and voltage is observed. Another phenomenon is the decrease of normalized amplitude responses with increasing excitation voltages. For such small stresses and weak electric fields as applied in the experiments, piezoceramics are usually described by linear constitutive equations around an operating point in the butterfly hysteresis curve. The non-linear effects under consideration were, e.g. observed and described by Beige and Schmidt [1,2], who investigated longitudinal plate vibrations using the piezoelectric 31-effect. They modeled these non-linearities using higher order quadratic and cubic elastic and electric terms. Typical non-linear effects, e.g. dependence of the resonance frequency on the amplitude, superharmonics in spectra and a non-linear relation between excitation voltage and vibration amplitude were also observed e.g. by von Wagner et al. [3] in piezo-beam systems. In the present paper, the work is extended to longitudinal vibrations of non-slender piezoceramic rods using the piezoelectric 33-effect. The non-linearities are modeled using an extended electric enthalpy density including non-linear quadratic and cubic elastic terms, coupling terms and electric terms. The equations of motion for the system under consideration are derived via the Ritz method using Hamilton's principle. An extended kinetic energy taking into consideration the transverse velocity is used to model the non-slender rods. The equations of motion are solved using perturbation techniques. In a second step, additional dissipative linear and non-linear terms are used in the model. The non-linear effects described in this paper may have strong influence on the relation between excitation voltage and response amplitude whenever piezoceramic actuators and structures are excited at resonance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have