Abstract

Let $\varphi(t,\cdot,u)$ be the flow of a control system on a Riemannian manifold $M$ of constant curvature. For a given initial orthonormal frame $k$ in the tangent space $T_{x_{0}}M$ for some $x_{0}\in M$, there exists a unique decomposition $\varphi_{t}=\Theta_{t}\circ\rho_{t}$ where $\Theta_{t}$ is a control flow in the group of isometries of $M$ and the remainder component $\rho_{t}$ fixes $x_{0}$ with derivative $D\rho_{t}(k)=k\cdot s_{t}$ where $s_{t}$ are upper triangular matrices. Moreover, if $M$ is flat, an affine component can be extracted from the remainder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.