Abstract

Oceanic flow comprises of a fast and a slow evolving component. Decomposing the flow field into these components is necessary to understand processes like mesoscale eddy dissipation and spontaneous wave emission. These processes are potentially important wave sources and lead to an energy transfer between the slow and the fast component. The first order approach is to decompose in geostrophic and non-geostrophic components. Since a part of the non-geostrophic component evolves slowly due to nonlinear interactions between both component, this approach is not precise enough to quantify energy transfers. To obtain higher accuracy in decomposing the flow field, more precise methods are required, such as optimal balance or nonlinear normal mode decomposition. However, their application is limited to idealized model settings that neither include topography nor a varying Coriolis parameter. Here, we modified the optimal balance method with a time averaging procedure, such that it is applicable in more realistic ocean models. We compared the new modified method with existing methods in a shallow water model and in a non-hydrostatic model. For longer time averaging periods, the modified optimal balance method converges against the original method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.