Abstract

This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain (a nonintegrable system) and compares the simulation results with the theoretical results in fluid (an integrable system). Three stages (the pre-in-phase traveling stage, the central-collision stage, and the post-in-phase traveling stage) are identified to describe the nonlinear interaction processes in the granular chain. The nonlinear scattering effect occurs in the central-collision stage, which decreases the amplitude of the incident solitary waves. Compared with the leading-time phase in the incident and separation collision processes, the lagging-time phase in the separation collision process is smaller. This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage. We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain. The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude. The results are reversed in the fluid. An increase in solitary wave amplitude leads to decreased attachment, detachment, and residence times for granular chains and fluid. For the immediate time-phase shift, leading and lagging phenomena appear in the granular chain and the fluid, respectively. These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call