Abstract

For the first time we investigate the properties of transverse electric polarized nonlinear guided waves propagating in an asymmetric N-channel waveguide surrounded on both sides by Kerr-like nonlinear media. We use a transfer matrix formalism that allows the exact calculation of the stationary field distribution and the nonlinear dispersion relation. The propagation wavevector and field distribution of surface and guided electromagnetic waves become power - dependent when one or both of the semi-infinite media bounding a single interface r a thin dielectric film exhibit intensity - dependent refractive indices''4. The aim of this work is to give an analytical treatment for the general N-channel asymmetric waveguide surrounded on both sides by Kerr-like optically nonlinear media. For a single channel wavegide (N with nonlinear bounding media we recover the results reported mD. By using the transfer matrix technique adapted for periodic multilayer linear dielectric structures in contact with nonlinear media6 the stationary field distribution and the rich structured nonlinear dispersion curve are obtained exactly. Numerically we investigated the TE-polarized nonlinear guided waves is a periodic stratified dielectric structure with five unit cells (ten dielectric layers) surrounded on both sides by nonlinear media with either equal or unequal Kerr-like self-focusing optical nonlinearities. The complex variations in the effective refractive index with guided wave power in the case of self-focusing optical nonlinearities suggest a new class of potentially useful optical devices particularly upper and

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.