Abstract

Functional canonical correlation analysis (FCCA) is a tool for exploring the associations between a pair of functional data. However, when the association is nonlinear or even nonmonotone, FCCA can fail to discover any meaningful relationship between the pair. In this paper, nonlinear FCCA estimators are constructed based on some popular measures of dependence — distance covariance and distance correlation. Consistency of the estimators is shown. Numerical studies are presented that demonstrate nonlinear FCCA can uncover new association patterns between functional covariates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.