Abstract
AbstractMolecular spring vibration isolation technology has been invented in the recent years but it still needs further development in dynamics theory. A molecular spring isolation (MSI) consists of water and hydrophobic zeolites as working medium, providing high-static-low-dynamic stiffness. The dynamic properties of MSI are thoroughly investigated in this paper. Firstly, the nonlinear dynamic model of a vibration system support by MSI, i.e. the equation of motion, is established. Then the averaging method is employed to estimate the frequency response function (FRF) of the primary resonance. The phase trajectories diagram evolvement of primary resonance is also investigated to analysis the stability of the primary resonance response. From the plot of FRF, it is found that there exists a jump phenomenon induced by nonlinear stiffness, which may have harmful impacts on the equipment which is supposed to be protected from vibrations and shocks. To avoid jump, the FRF is analyzed to find the critical values of system parameters and a jump avoidance criterion is introduced.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.