Abstract

Theoretical development of a new experimental method for investigation of mass transport in porous membranes, based on the principle of the modified Wicke-Kallenbach diffusion cell and the nonlinear frequency response analysis is presented. The method is developed to analyze the transport of a binary gas mixture in a porous membrane. The mixture is assumed to consist of one adsorbable and one inert component. Complex mass transfer mechanism in the membrane, where bulk or transition diffusion in the pore volume and surface diffusion take place in parallel, is assumed. Starting from the basic mathematical model equations and following a rather standardized procedure, the frequency response functions (FRFs) up to the second order are derived. Based on the derived FRFs, correlations between some characteristic features of these functions on one side, and the whole set of equilibrium and transport parameters of the system, on the other, are established. As the FRFs can be estimated directly from different harmonics of the measured outputs, these correlations give a complete theoretical basis for the proposed experimental method. The method is illustrated by quantifying the transport of helium (inert gas) and C3H8 and CO2 (adsorbable gases) through a porous Vycor glass membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call