Abstract
There are two natural notions of L\'evy processes in free probability: the first one has free increments with homogeneous distributions and the other has homogeneous transition probabilities (P.~Biane, \textit{Math. Z.} {\bf 227}(1998), 143--174). In the two cases one can associate a Nevanlinna function to a free L\'evy process. The Nevanlinna functions appearing in the first notion were characterized by Bercovici and Voiculescu, \textit{Pacific J. Math.} {\bf 153}(1992), 217--248. I give an explicit parametrization for the Nevanlinna functions associated with the second kind of free L\'evy processes. This gives a nonlinear free L\'evy--Khinchine formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.