Abstract

A Nevanlinna function is a function which is analytic in the open upper half-plane and has a non-negative imaginary paxt there. In this paper we study a fractional linear transformation for a Nevanlinna function n with a suitable asymptotic expansion at ∞, that is an analogue of the Schur transformation for contractive analytic functions in the unit disk. Applying the transformation p times we find a Nevanlinna function n p which is a fractional linear transformation of the given function n. The main results concern the effect of this transformation to the realizations of n and n p by which we mean their representations through resolvents of self-adjoint operators in Hilbert space. Our tools are block operator matrix representations, u-resolvent matrices, and reproducing kernel Hilbert spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.