Abstract
Stranded conductors are widely used structural components. Owing to their construction in layers, their bending stiffness may vary according to their tension, curvature and deformation history. Recently, a sound and practical model of variable bending stiffness using the secant stiffness method became available. Based on the same physical assumptions, This work presents the development of a variable bending stiffness model using the tangent stiffness method and its implementation in a classical finite-element formulation adapted for nonlinear analysis under arbitrary loading. This extends its use to a general finite-element program. Comparisons with static and dynamic tests on short-span substation conductors show that the model computes a representative bending stiffness for such cases and yields adequate predictions of tractions generated at their ends, in both static and dynamic regimes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have