Abstract
An analog computation of carbon fiber-reinforced polymer (CFRP)-confined rectangular concrete column under cyclic lateral load is carried out using the finite element method (FEM) and is compared with the experimental results. The comparison indicates that the FEM could accurately predict the behavior of CFRP-confined reinforced concrete (RC) column under cyclic lateral loading. The reinforcement mechanism of carbon fiber sheets on RC columns is studied by analyzing the results calculated with FEM such as the stress-strain of carbon fiber sheets, stirrups, and concrete. The effect of axial compression ratio and the number of layers of fiber sheet on the ultimate bearing capacity and displacement ductility of RC column are studied by the finite element analysis. Part of the conclusion, namely, the effect of the number of layers and setting height of fiber sheet on the RC column, offers the reference and basis for further engineering application. template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.