Abstract
The effect of a uniform dilation of space on stochastically driven nonlinear field theories is examined. This theoretical question serves as a model problem for examining the properties of nonlinear field theories embedded in expanding Euclidean Friedmann–Lemaître–Robertson–Walker metrics in the context of cosmology, as well as different systems in the disciplines of statistical mechanics and condensed matter physics. Field theories are characterized by the speed at which they propagate correlations within themselves. We show that for linear field theories correlations stop propagating if and only if the speed at which the space dilates is higher than the speed at which correlations propagate. The situation is in general different for nonlinear field theories. In this case correlations might stop propagating even if the velocity at which space dilates is lower than the velocity at which correlations propagate. In particular, these results imply that it is not possible to characterize the dynamics of a nonlinear field theory during homogeneous spatial dilation a priori. We illustrate our findings with the nonlinear Kardar–Parisi–Zhang equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.