Abstract
Effects of plasma non-uniformities and kinetic dispersiveness on the spontaneous excitation of geodesic acoustic mode (GAM) by reversed shear Alfvén eigenmode (RSAE) are investigated numerically. It is found that, due to the turning points induced by the shear Alfvén continuum structure, the nonlinear excitation of GAM is a quasiexponentially growing absolute instability. As the radial dependence of GAM frequency and pump RSAE mode structure are accounted for, the radially inward propagating GAM is preferentially excited, leading to core localized thermal plasma heating by GAM collisionless damping. Our work, thus, suggests that GAM excitation plays a crucial role in not only RSAE nonlinear saturation, but also anomalous fuel ion heating in future reactors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have