Abstract

Abstract An efficient nonlinear energy sink (NES) is developed here by employing a symmetric piecewise nonlinear coupling force. The proposed piecewise NES has a symmetric clearance about its equilibrium position in which zero stiffness is assumed. However, at the boundaries of the symmetric clearance, the NES is coupled to the linear structure by either linear or nonlinear stiffness elements. The damping is assumed to be continuous linear viscous damping during the oscillation of the NES mass inside and outside the clearance zone. This design is further modified by incorporating a negative coupling stiffness within the clearance zone. Therefore, the performance of the proposed piecewise NESs in rapid vibration suppression is numerically investigated with two-degree-of-freedom spring-mass system and compared with existing NESs in the literature. Accordingly, significant improvement in vibration suppression has been achieved by the proposed piecewise NES compared with other types of existing NESs. Moreover, the numerical simulation results have shown more robustness in the piecewise NES performance for a wide range of stiffness and damping variations than the linear absorber and other types of NESs in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.