Abstract

We adopt a trait-based approach to explain Diel Vertical Migration (DVM) across a diverse assemblage of planktonic copepods, utilizing body size as a master trait. We find a reproducible pattern of body size-dependence of day and night depths occupied, and of DVM. Both the smallest surface-dwelling and the largest deeper-dwelling copepods refrain from migrations, while intermediate-sized individuals show pronounced DVM. This pattern apparently arises as a consequence of size-dependent predation risk. In the size classes of migratory copepods the amplitude of DVM is further modulated by optical attenuation in the ocean water column because increased turbidity decreases encounter rates with visually hunting predators. Long-term changes in the ocean optical environment are expected to alter the vertical distributions of many copepods and thus to affect predator-prey encounters as well as oceanic carbon export.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.