Abstract

Under physiologic conditions, the AV junction is traditionally regarded as a passive conduit for the conduction of impulses from the atria to the ventricles. An alternative view, namely that subsidiary pacemakers play an active role in normal electrophysiologic dynamics during sinus rhythm, has been suggested based on nonlinear models of cardiac oscillators. A central problem has been the development of a simple but explicit mathematical model for coupled nonlinear oscillators relevant both to stable and perturbed cardiac dynamics. We use equations describing an analog electrical circuit with an external d.c. voltage source ( V 0) and two nonlinear oscillators with intrinsic frequencies in the ratio of 3:2, comparable to the SA node and AV junction rates. The oscillators are coupled by means of a resistor. 1:1 (SA:AV) phase-locking of the oscillators occurs over a critical range of V 0. Externally driving the SA oscillator at increasing rates results in 3:2 AV Wenckebach periodicity and a 2:1 AV block. These findings appear with no assumptions about conduction time or refractoriness. This dynamical model is consistent with the new interpretation that normal sinus rhythm may represent 1:1 coupling of two or more active nonlinear oscillators and also accounts for the appearance of an AV block with critical changes in a single parameter such as the pacing rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.