Abstract

This work explores the effects of geometrical nonlinearities in the vibration analysis of rotating structures and helicopter blades. Structures are modelled via higher-order beam theories with variable kinematics. These theories fall in the domain of the Carrera Unified Formulation (CUF), according to which the nonlinear equations of motion of rotating blades can be written in terms of fundamental nuclei, whose formalism is an invariant of the theory approximation. The inherent three-dimensional nature of CUF enables one to include all Green-Lagrange strain components as well as all coupling effects due to the geometrical features and the three-dimensional constitutive law. Numerical solutions are considered and opportunely discussed. Also, linearized and full nonlinear solutions for vibrating rotating blades are compared both in case of small amplitudes and in the large deflections/rotations regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.