Abstract
The source frequency has a strong influence on plasma characteristics in RF discharges. Multiple sources at widely different frequencies are often simultaneously used to separately optimize the magnitude and energy of ion fluxes to the substrate. In doing so, the sources are relatively independent of each other. These sources can, however, nonlinearly interact if the frequencies are sufficiently close. The resulting plasma and electrical characteristics can then be significantly different from those due to the sum of the individual sources. In this paper, a plasma equipment model is used to investigate the interaction of multiple frequency sources in capacitively and inductively coupled RF excited plasmas. In capacitively coupled systems, we confirmed that the plasma density increases with increasing frequency but also found that the magnitude of the DC bias and DC sheath voltage decreases. To produce a capacitively coupled discharge having a high plasma density with a large DC bias, we combined low and high frequency sources. The plasma density did increase using the dual frequency system as compared to the single low frequency source. The sources, however, nonlinearly interacted at the grounded wall sheath, thereby shifting both the plasma potential and DC bias. In inductively coupled plasmas (ICP), the frequency of the capacitive substrate bias does not have a significant effect on electron temperature and density. The DC bias and DC sheath voltage at the substrate were, however, found to strongly depend on source frequency. By using additional RF sources at alternate locations in ICP reactors, it was found that the DC bias at the substrate was varied without significantly changing other plasma parameters, such as the substrate sheath potential.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have