Abstract

Cavity optomechanics is concerned with the interaction between optical cavities and mechanical resonators. Here, we present systematic research on the dynamic behaviors of cavity optomechanical systems incorporating the influence of thermal nonlinearity. A dimensionless theoretical model was established to describe the system and numerical simulations were performed to study the dynamic behaviors. We theoretically identify the staircase effect, which can abruptly alter the system parameters when adiabatically sweeping the pump laser frequency across the optical cavity resonance and driving the mechanical resonator into oscillation. Moreover, we found bistability effects in several detuning intervals when sweeping the laser forward and backward. Both effects are analyzed theoretically and the roots lie in the thermal instability between averaged cavity energy and laser detuning. Our study shows the dynamic behaviors in an optomechanical-thermal system and provides guidance in leveraging the systems for applications in optical frequency comb, phonon laser, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call