Abstract

Molecular dynamics of two water models, SPC/E and TIP3P, at a number of temperatures are used to test the Kivelson-Madden equation connecting single-particle and collective dielectric relaxation times through the Kirkwood factor. The relation is confirmed by simulations and used to estimate the nonlinear effect of the electric field on the dielectric relaxation time. We show that the main effect of the field comes through slowing down of the single-particle rotational dynamics and the relative contribution of the field-induced alteration of the Kirkwood factor is insignificant for water. Theories of nonlinear dielectric relaxation need to mostly account for the effect of the field on rotations of a single dipole in a polar liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.