Abstract

Plasma zonal-flow excitation and saturation in fluid electron-drift-wave turbulence are studied spectrally. The zonal flow is a spectral condensation onto the zero-frequency linear-wave structure. In the representation diagonalizing the wave coupling that dominates interactions at long wavelengths, nonlinear triad interactions involving zero-frequency waves are greatly enhanced. Zonal modes are excited on both unstable and purely stable eigenmode branches. Coupling to the latter introduces robust, finite amplitude-induced damping of zonal flows, providing saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.