Abstract

AbstractAn observational study of nonlinear interaction between the quasi 2 day wave (QTDW) and the diurnal and semidiurnal tides from meteor radar measurements at Maui is reported. The diurnal and semidiurnal tides show a short‐term variation with the QTDW activity. The variation of amplitude of the semidiurnal tide is opposite to that of the QTDW. The minimum amplitudes of the diurnal tide appear several days later than the maximum amplitudes of the QTDW, and the diurnal tide obviously strengthens when the QTDW drops to small amplitudes. The bispectrum analysis shows significant nonlinear interactions among the QDTW and the tidal components. The two quasi 16 h modes with periods of 16.2 h and 15.8 h generated in the interactions of the QTDW with the diurnal and semidiurnal tides can clearly be distinguished because of the slight deviation of the QTDW period from 48 h. The bicoherence spectrum demonstrates that the QTDW and the semidiurnal tide have quite strong levels of coherence, indicating that the nonlinear interaction is a mechanism responsible for the variability of the semidiurnal tide. Although there is also some interaction between the QTDW and the diurnal tide, their coherence level is low. When the QTDW drops to very weak amplitudes, the background wind decreases and reverses. During this time, the diurnal tide holds large amplitudes. These results support the notion that the variability of the diurnal tide is mainly attributable to the strong QTDW‐induced changes in the background atmosphere, which was shown in the modeling study by Chang et al. (2011). Hence, both the nonlinear interaction and the background flow changes are responsible for the observed variation of the diurnal tide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call