Abstract

The combined effects of nonlinear thermal convection and radiation in 3D boundary layer flow of non-Newtonian nanofluid are scrutinized numerically. The flow is induced by the stretching of a flat plate in two lateral directions. The mechanism of heat and mass transport under thermophoretic and Brownian motion is elaborated via implementation of the thermal convective condition. The prevailing two-point nonlinear boundary value problem is reduced to a two-point ordinary differential problem by employing suitable similarity transformations. The solutions are computed by the implementation of homotopic scheme. At the end, a comprehensive parametric study has been conducted to analyze the typical trend of the solutions. It is found that the nanoparticle volume fraction and temperature profiles are stronger for the case of solar radiation in comparison with problem without radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call