Abstract

Over the past years, hydropower model and control were largely based on classical and linear transfer function, this was motivated by the available control system design techniques that were available and the desire to simplify the design procedure. Such a model is inadequate for dynamic study and design of hydropower station in the presence of uncertainties in the water head, discharge rate, elastic water effect, traveling wave effect, large variation power output and frequency. This research, therefore, focuses on developing a nonlinear model for the Kainji hydroelectric power station. The model relies on the energy conversion principles, inflows, discharge, evaporation rate and number of units on busbar. The parameters of the model were also estimated, and the model validated with an error within +1.4% to -3.6%. The model is expected to be used to determine the optimal control policies for the operation of the station and the release of water to the downstream. Keywords: Hydroelectric Power, Inflow, Model, Operating Head, Turbo-alternator

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.